현실 세계에서 옴니 NVIDIA RTX

2022.01.21 BNI&C **김영호상무**

현실 세계에서 옴니버스 세계까지 가속화하는

Digital Transformation

World is Changing People are Changing Values are Changing Business is Changing Platform & Tools are Changing Data TEXT Mage Audio&Video ?

NVIDIA RTX IN REAL WORLD

VIRTUAL WORKSTATION

NVIDIA RTX PLATFORM

DATA SCIENCE

NVIDIA OMNIVERSE ENTERPRISE

DATA CENTER

EMBEDDED

COMPUTE

XR

BN Í&C

VISUALLY COMPLEX CONTENT

High Fidelity 2D, 3D, Video Content

Complex, Multi-Application, Collaborative Workflows Put Greater Demands on the GPU & GPU Memory

THE NEW ERA OF WORK Complex, Multi-Application, Collaborative Workflows Put Greater Demands on GPU Memory

Modern Workflows Require Multiple Applications

Do Any Work from Anywhere

AI-ASSISTED REAL-TIME RAY TRACING

Concurrent Float & Int

Variable Rate Shading

Faster parallel processing and better multi-tasking

Accelerates performance of visually rich and geometrically complex scenes

Mesh Shaders

RT Cores

Bring real-time ray tracing to professional graphics workflows

PHYSX

FLOW

BLAST

FLOW

BLAST

FLOW

AMPERE ARCHITECTURE – 2nd Gen RTX

NEW SM 30 FP32 TFLOPS

NEW RT CORE 58 RT TFLOPS

NEW TENSOR CORE 238 Tensor TFLOPS

RTX - Dedicated cores to maximize ray tracing performance

Shader

Shader **RT** Core

Shader **RT** Core + **Tensor Core**

12ms

THE MAGIC OF DEEP LEARNING

CHARACTER CONCEPTING

VIDEO TO 3D

AUDIO TO FACIAL ANIMATION

PHYSICS SIMULATION

Clothing models from UC Berkeley Garment Library

CHARACTER LOCOMOTION

RT DENOISING

NVIDIA RTX TECHNOLOGIES

METAVERSE IN OMNIVERSE

NVIDIA OMNIVERSE PLATFORM & APPS

BMW Group Inventing the Factory of the Future

Kohn Pedersen Fox Paving the Way to Next-Gen Design

NVIDIA OMNIVERSE Active Evaluation Across Industry Leaders

Ericsson Simulating 5G Signal Propagation

WPP Building the Future of Advertising

Industrial Light and Magic Transforming VFX Workflows

Volvo Cars Reinventing Manufacturing, Marketing, and the Customer Experience

NVIDIA TECHNOLOGIES

NVIDIA OMNIVERSE

27

Top Industry Tools

THE OMNIVERSE PLATFORM

Realtime Collaboration

Open Standards

OMNIVERSE APPLICATIONS

FOR 3D DEEP LEARNING RESEARCHERS

FOR ROBOTICISTS, SIMULATION SPECIALISTS

NVIDIA OMNIVERSE STACK

Core Services / On Prem / Cloud

Connection SDK / Plugins

NVIDIA OMNIVERSE STACK

OMNIVERSE

Viewer / Editor / Framework

Physics / AI / Animation / Behavior Realtime / Scalable / Accurate / MDL

UNIVERSAL SCENE DESCRIPTION THE "HTML" OF 3D VIRTUAL WORLDS

- **NUSD**
- Developed by Pixar
- Foundation for NVIDIA Omniverse
- Open-sourced API and file format for complex scene graphs
- Easily extensible, simplifies interchange of assets between industry software
- Introduces novel concept of layering
- Enables simultaneous collaboration for large teams in different department working on the same scene
- Originated in M&E, now becoming a standard across industries including AEC, Manufacturing, Product Design, Robotics

NVIDIA OMNIVERSE STACK

def Material "flex_material" { . . .

def Shader "flex_material" { uniform token info:implementationSource = "sourceAsset" uniform token info:mdl:sourceAsset:subIdentifier = "::nvidia::core_definitions::flex_material"

MDL & USD SCHEMA

- uniform asset info:mdl:sourceAsset = @nvidia/core_definitions.mdl@

LIVE-LINK DIFFERENT APPS

NVIDIA OMNIVERSE STACK

		ø	×
CACHE: ON	LIVE S	YNC: OF	F 📥
		-	
	_		
racing	Post Pre	ocessin	9
			81
			11
		6	2
2			
40	.0		
60	.0		
6	9		
-	~	-	
	-		BO

NVIDIA OMNIVERSE STACK KIT STACK

1065	
DEEP TAG ATCH RENDERING	
PYTHON	

NVIDIA OMNIVERSE STACK NUCLEUS-BASED MICROSERVICES

USE NUCLEUS FOR SERVICES TO COMMUNICATE

- Many Applications can communicate using Nucleus USD content or Nucleus Channels
- Kit Apps can contribute and represent **Micro-services Execution Engine**
- Other Application can be Microservices too, using Unreal Editor or Houdini to author or control Data

NVIDIA OMNIVERSE STACK

Local

Remote

NEW RTX PRODUCT PORTFOLIO

Innovative Form Factor Incredible Performance and Features

- Low Profile, Dual Slot Design
- NVIDIA RTX Tensor, RT Cores
- 12 GB GDDR6 w/ECC Memory
- VR Ready

NVIDIA RTX A2000 12GB Expanding Access to the Power of NVIDIA RTX

- Brings 12GB of GPU memory to 2000 series GPUs
- Provides performance benefits to memory intensive applications & workflows
- Ready for today's multi-application, higher-resolution workflows
- Future proofs your investment for the larger data sets and higher resolution work of tomorrow

NVIDIA RTX A2000 12GB SPECIFICATIONS

		NVIDIA RTX A2000	Quadro P2200	
GPU Architecture	Ampere	Ampere	Pascal	
CUDA Cores	3328	3328	1280	
Tensor Cores	104 Ampere Arch Cores	104 Ampere Arch Cores	_	
RT Cores	26 Ampere Arch Cores	26		
Peak Single-Precision Performance	8 TFLOPS	7.99 TFLOPS	3.8 TFLOPS	
Memory Size	12 GB GDDR6 w/ECC	6 GB GDDR6 w/ECC	5 GB GDDR5X	
Memory Bandwidth	288 GB/s	288 GB/s	200 GB/s	
VR Ready	Yes	Yes	No	
Display Connectors	4x mDP 1.4	4x mDP 1.4	4x DP 1.4	
Form Factor	2.7"H x 6.6"L Dual Slot		4.4" H x 7.9"L Single Slot	
Max Power Consumption	70W	70W	75W	
Graphics Bus	PCI Fynress Gen 1 y 16	PCI Express Gen 4 x 16	PCI Express Gen 3 x 16	

BN I&C

NVIDIA RTX A4500

- Brings 20GB of GPU memory to 4000 series GPUs
- Additional CUDA, RT, and Tensor cores provide performance benefits to professional applications & workflows
- NVLink support, another first for 4000 series GPUs, future proofs your investment, letting you expand GPU memory for even larger models and data sets of tomorrow

NVIDIA RTX A4500 SPECIFICATIONS

	RTX A4500	RTX A4000	RTX 4000	
GPU Architecture	Ampere	Ampere	Turing	
CUDA Cores	7168	6144	2304	
Tensor Cores	224 Ampere Arch Cores	192 Ampere Arch Cores	288 Turing Arch Cores	
RT Cores	56	48	36	
Peak Single-Precision Performance	23.7 TFLOPS	19.2 TFLOPS	7.1 TFLOPS	
Memory Size	20 GB GDDR6 w/ECC	16 GB GDDR6 w/ECC	8 GB GDDR6	
Memory Bandwidth	640 GB/s	512 GB/s	416 GB/s	
Display Connectors	4x DP 1.4	4x DP 1.4	3x DP 1.4 + 1x USB-C	
Max Power Consumption	200W	140W	125W*	
Power Connector	8-Pin PCle	6-Pin PCle	8-Pin PCIe	
Graphics Bus	PCI Express Gen 4 x 16	PCI Express Gen 4 x 16	PCI Express Gen 3 x 16	
NVLink Support	Yes, 112.5 GB/s (bidirectional)	No	No	
Form Factor 4.4" H x 10.5" L Dual Slot		4.4"H x 9" L Single Slot	4.4"H x 9.5"L Single Slo	

8GB GPU Memory

RTX A4500 - DO MORE

🖾 Create 2021.3.6 - omniverse://localhost/NVIDIA/Demos/AEC/BrownstoneDemo/Worlds/World_BrownstoneDemopack_Morning(20Gb).usd (read-only)*

20GB of GPU Memory

-		D		\times	
	LIVE	SYN		FF 🌢	
1e	r Set	ungs		_	
Ŋ	Ь	G	-	=	-
	٢	۲			
	90				
	90				
2	٢	۲			
	\$ 2	Ð			
	\$	Ð			
		۲	-		
	٢	۲			
	٢	۲			
	0	۲			
	0	(
	•	•			
	0	•			
ľ	m				٦
					۲
	1:12	PM			
1	0/27	/202	1	1	

A4500 RENDERING PERFORMANCE Faster Rendering Performance than Previous Generation 4000 Series GPUs

Batch Size=256*# of GPUs; Precision=Mixed; AMP=Yes; Data=Real; XLA=Yes; cuDNN Version=8.2.4.15; NCCL Version=2.11.4; Baseline=DL 21.10; Installation Source=NGC;

Batch Size=128*# of GPUs; Precision=Mixed; Data=Real; cuDNN Version=8.2.4.15; NCCL Version=2.11.4; Baseline=DL 21.10; Installation Source=NGC;

A4500 PERFORMANCE (PRELIMINARY) Faster AI 4000 Series GPUs

Batch Size=128*# of GPUs; Precision=Mixed; Data=Synthetic; Sequence Length=128; cuDNN Version=8.2.4.15; Baseline=DL 21.10; Installation Source=NGC;

Tests un on an Intel Xeon Gold 6154 3GHz, 3.7GHz Turbo, 64GB RAM, Ubuntu 20.04 LTS x64, NVIDIA Driver 470.62

WORKFLOW EXAMPLE: UNDERSTANDING TRUE VALUE Even a Small Performance Advantage can Result in Huge Productivity Gains

Al training workflows can take days, weeks to train & validate models - just comparing price/performance would result in wrong decision

Example of a 30% performance advantage for AI training

(lower is better)

NVIDIA T1000 8GB

- Brings 8GB of GPU memory to 1000 series GPUs
- Provides performance benefits to memory intensive applications & workflows
- Ready for today's multi-application, higher-resolution workflows
- Future proofs your investment for the larger data sets and higher resolution work of tomorrow

NVIDIA T1000 SPECIFICATIONS

	NVIDIA T1000 8GB	NVIDIA T1000	NVIDIA Quadro P1000	
GPU Architecture	Turing	Turing	Pascal	
CUDA Cores	896	896	640	
Peak Single- Precision Performance	Up to 2.5 TFLOPS	Up to 2.5 TFLOPS	Up to 1.89 TFLOPS	
Memory Size	8GB GDDR6	4GB GDDR6	4GB GDDR5	
Memory Interface	128-bit	128-bit	128-bit	
Memory Bandwidth	Up to 160 GB/s	Up to 160 GB/s	Up to 80 GB/s	
Display Connectors	4x mDP 1.4	4x mDP 1.4	4x mDP 1.4	
Max Display Resolution	8K @ 60Hz	8K @ 60Hz	5K @ 60Hz	
Max Power Consumption	50 W	50 W	47 W	
Graphics Bus	PCI Express 3.0 x16	PCI Express 3.0 x16	PCI Express 3.0 x16	
Form Factor	2.713 inches H x 6.137 inches L Single Slot	2.713 inches H x 6.137 inches L Single Slot	2.713 inches H x 5.7 inche L Single Slot	

APPLICATION PERFORMANCE DATA

Tests run on an Intel Xeon Gold 6154 @ 3GHz, 3.7GHz Turbo, 64GB RAM, Windows 10 x64, NVIDIA driver 472.06. Autodesk 3dsMax Dassault Systemes CAITA results from SPECviewperf 2020 3dsMax and CATIA subtest composite scores; RedCine-X Pro performance uses internal testing measuring performance with 6K and 8K video. DaVinci Resolve results from internal testing measuring average FPS of video rendering using various effects at resolutions from 1080p to 8K. NVIDIA T1000 failed to execute tests due to lack of GPU memory.

NVIDIA T400 4GB

- Brings 4GB of GPU memory to 400 series GPUs
- Same compact, power efficient form factor
- Ready for multi-application, higher-resolution workflows
- Future-proofs your investment for the larger data sets and higher resolution workloads of tomorrow

NVIDIA T400 4GB SPECIFICATIONS

	NVIDIA T400 4GB	NVIDIA T400	NVIDIA Quadro P400
GPU Architecture	Turing	Turing	Pascal
CUDA Cores	384	384	256
Peak Single- Precision Performance	Up to 1.09 TFLOPS	Up to 1.09 TFLOPS	Up to .64 TFLOPS
Memory Size	4GB GDDR6	2GB GDDR6	2GB GDDR5
Memory Interface	64-bit	64-bit	64-bit
Memory Bandwidth	Up to 80 GB/s	Up to 80 GB/s	Up to 32 GB/s
Display Connectors	3x mDP 1.4	3x mDP 1.4	3x mDP 1.4
Max Display Resolution	5K @ 60Hz	5K @ 60Hz	5K @ 60Hz
Max Power Consumption	30 W	30 W	30 W
Graphics Bus	PCI Express 3.0 x16	PCI Express 3.0 x16	PCI Express 3.0 x16
Form Factor	2.713 inches H x 6.137 inches L Single Slot	2.713 inches H x 6.137 inches L Single Slot	2.713 inches H x 5.7 inche L Single Slot

MULTI-APPLICATION WORKLOADS KEY TO MAXIMIZE PRODUCTIVITY Need to Consider the GPU Memory Requirements of all the Apps in the Workflow

Will the GPU purchased today handle the workloads of the next 6, 12, 24, 36 months?

Sample CAD Design Workflow

GPU MEMORY - WORKFLOW CONSUMPTION Each Application will Consume GPU Compute Cycles and GPU memory

GPU Memory

GPU accelerated applications rely on data being in GPU memory for maximin performance

Insufficient GPU can cause applications to revert to slower paths or fail

Plug-ins, productivity applications, other tools (like NVIDIA Broadcast app) can add to demands of GPU memory - **don't forget to include them**

Display data needs to be in GPU memory too, multiple high-resolution displays, high-resolution HMDs will add to memory consumption

Model size continues to grow, use of materials, photo real models, overall complexity means more GPU memory

GPU PERFORMANCE

Slower Transfer to GPU

Applications may run slower or fail to run if there is insufficient GPU memory

BN Í&C

Boosting the World **Al Based Immersive Real-time 3D**

Thank you

